2005 Vol. 7, No. 4 533–536

Highly Diastereoselective Allylic Azide Formation and Isomerization. Synthesis of $3(2'-Amino)-\beta$ -lactams

Giuliana Cardillo,* Serena Fabbroni, Luca Gentilucci, Rossana Perciaccante, Fabio Piccinelli, and Alessandra Tolomelli

Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy

giuliana.cardillo@unibo.it

Received October 25, 2004

ABSTRACT

The stereoselective anti S_N2' attack of NaN_3 to 3-alkenyl-3-bromo-azetidin-2-ones gave a mixture of diastereomeric azides in fast equilibrium. The [3,3]-sigmatropic rearrangement of allylic azides occurred with complete stereocontrol, allowing the equilibrium to be directed preferentially toward the (*E*)- or (*Z*)-isomer, useful precursors of 3(2'-amino)- β -lactams.

One of the most useful reactions in organic chemistry is the nucleophilic substitution of allylic halides. Many important aspects of their behavior such as the stereo- and regiochemistry of the substitutions, have received considerable attention.¹

The reaction of a nucleophile upon an allylic halide can occur via an S_N2 process with attack at $C\alpha$ or through an S_N2' process with attack of the nucleophile at $C\gamma$ and departure of the leaving group. While the stereochemistry of the S_N2 is defined, the S_N2' attack can occur syn or anti with respect to the leaving group, depending on the nature of the nucleophile. $^{1a-c}$ The theory 2 suggests that a syn process

(1) For a review, see: (a) Magid, R. M. Tetrahedron 1980, 36, 1901–1930. (b) Toromanoff, E. Tetrahedron 1980, 36, 2809–2931. (c) Paquette, L. A.; Stirling, C. J. M. Tetrahedron 1992, 48, 7383–7423. For recent reviews on metal-catalyzed allylic substitution reactions, see: (d) Pfaltz, A.; Lautens, M., In Comprehensive Asymmetric Catalysis II; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag Telos: Berlin Heidelberg, 1999; Chapter 24, pp 833–884. (e) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921–2943.

is to be predicted for neutral nucleophiles, while anionic nucleophiles approach from the anti direction; however, the experimental evidence "is often contradictory". ^{1a} This paper concerns the nucleophilic attack of NaN₃ to a particular allylic moiety, the 3-alkenyl-3-bromo-azetidin-2-ones **1**. ³

This reaction shows interesting mechanistic aspects⁴ and offers the opportunity to introduce in few steps and under high regio- and stereocontrol the amino function in the side

^{(2) (}a) Fukui, K. Acc. Chem. Res. 1971, 4, 57–64. (b) Yates, R. L.; Epiotis, N. D.; Bernardi, F. J. Am. Chem. Soc. 1975, 97, 6615–6621. (c) Caramella, P.; Rondan, N. G.; Paddon-Row, M. N.; Houk, K. N. J. Am. Chem. Soc. 1981, 103, 2438–2440. (d) Stohrer, W.-D. Angew. Chem. 1983, 95, 642–643. (e) Bach, R. D.; Wolber, G. J. J. Am. Chem. Soc. 1985, 103, 1352–1357.

⁽³⁾ Benfatti, F.; Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R. Piccinelli, F.; Tolomelli, A. *Synthesis* **2005**, 61–70.

^{(4) (}a) Panek, J. S.; Yang, M.; Muler, I. *J. Org. Chem.* **1992**, *57*, 4063–4064. (b) Padwa, A.; Sa, M. M. *Tetrahedron Lett.* **1997**, *38*, 5087–5090. (c) Padwa, A.; Sà, M. M. *J. Braz. Chem. Soc.* **1999**, *10*, 231–236. (d) Banert, K.; Hagedorn, M.; Liedtke, C.; Melzer, A.; Schoffler, C. *Eur. J. Org. Chem.* **2000**, 257–267.

chain of the β -lactam⁵ (Figure 1). The propensity of allylic azides to undergo [3,3]-sigmatropic rearrangement,⁶ thus

Figure 1. Synthetic pathway to $3(2'-amino)-\beta$ -lactams.

giving a mixture of isomers, is overcome in our case by the complete stereocontrol at the equilibrium, which makes the reaction of synthetic interest.⁷

In 1971, Bose and Manhas⁸ described the direct synthesis of α -vinyl- β -lactams by the reaction of crotonyl chloride and TEA with a Schiff base. We have applied the same reaction conditions for the preparation of 3-alkenyl-3-bromo-azetidin-2-ones,³ starting from α -bromo- β , γ -unsaturated ketenes⁹ and a variety of Schiff bases. The reaction occurs smoothly in moderate to good yields (50–60%), affording preferentially the cis diastereomers, which were purified by flash chromatography or preparative HPLC and utilized as starting materials for further transformations. The prospects of the employment of α -alkenyl- α -bromo-azetidin-2-ones 1 as precursors of new molecules, prompted us to verify the feasibility of the substitution reaction. The presence of the allylic bromide permitted easy S_N2' reaction. In fact, the treatment of cis- (\pm) -1a-c and (1'S,3R,4S)-1d with NaN₃ in DMF at 70 °C afforded 1:1 mixtures of (E)-2 and (Z)-3 azido derivatives in good yield10 (Table 1) and 10-15% yield of

Table 1. Nucleophilic Attack of NaN₃ to 3-Bromo-3-alkenyl-azetidin-2-ones (±)-**1a−d** in DMF at 70 °C

1	R	yield ^a of (E) -2 + (Z) -3 $(\%)$	$\mathrm{dr} \ \mathrm{of} \ \mathbf{E}^b$ $(\%)$	$\mathrm{dr}\ \mathrm{of}\ \mathbf{Z}^b$ (%)
1a	$\mathrm{CH_2Ph}$	69	92:8	85:15
1b	$C_2H_4CO_2Et$	78	>95:5	>95:5
1c	$CH_2CH=CH_2$	70	85:15	88:12
1d	(S)-phenylethyl-	68	90:10	90:10

^a After purification by flash chromatography over silica gel. ^b Product distribution was determined by ¹H NMR integration at 300 MHz on the crude mixture and confirmed by isolation of pure compounds.

azide 4^{11} (Scheme 1). All the products were isolated by flash chromatography on silica gel. The Z and E configuration of

Scheme 1. Nucleophilic Attack of NaN₃ to 3-Bromo-3-alkenyl-azetidin-2-ones (\pm) -1a-d

the double bond was attributed by comparison of the chemical shift of vinyl proton H₁. In accordance with literature data, 12 the vinyl proton resonating at 5.25 ppm was attributed to the (Z)-3 isomer, while the one at 6.0 ppm was attributed to the isomer (E)-2. Compounds 2 and 3 were obtained, as oils, in high diastereomeric ratio, each (E)-2 or (Z)-3 being accompanied by small amounts of the diastereoisomer with the C-N₃ stereocenter in the opposite configuration (Table 1, columns 4 and 5). In accordance with the theory on the S_N2' process for anionic nucleophiles, we suggest for optically active (E)-2d major isomer the (2'R)configuration and for the (Z)-3d major isomer the (2'S)configuration. To confirm the correct attribution of the stereochemistry, compound (\pm) -1e was prepared starting from benzyl-(4-nitro-benzylidene)-amine and α-bromo-hexenoyl chloride and obtained in 93% yield (Scheme 2). The

534 Org. Lett., Vol. 7, No. 4, 2005

⁽⁵⁾ For an example of azetidinone substituted at the side chain with an amino group such as tabtoxin and its analogues, see: (a) Lee, D. L.; Rapoport, H. J. Org. Chem. 1975, 40, 3491—3496. (b) Baldwin, J. E.; Otsuka, M.; Wallace, P. M. Tetrahedron 1986, 42, 3097—3110. (c) Greenlee, W. J.; Springer, J. P.; Patchett, A. A. J. Med. Chem. 1989, 32, 165—170. (6) (a) Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960, 82, 5956—5957. (b) Murahashi, S. I.; Taniguchi, Y.; Imada, Y.;

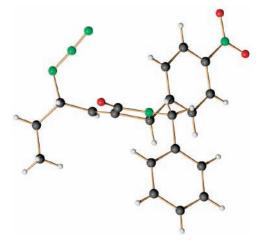
¹⁹⁶⁰, 82, 5956–5957. (b) Murahashi, S. I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. *J. Org. Chem.* **1989**, 54, 3292–3303. (c) Safi, M.; Fahrang, R.; Sinou, D. *Tetrahedron Lett.* **1990**, 31, 527–530. (d) Chida, N.; Tobe, T.; Murai, K.; Yamazaki, K.; Ogawa, S. *Heterocycles* **1994**, 38, 2383–2388

⁽⁷⁾ Trost, B. M.; Pulley, S. R. *Tetrahedron Lett.* **1995**, *36*, 8737–8740. (8) (a) Bose, A. K.; Spiegelmann, G.; Manhas, M. S. *Tetrahedron Lett.* **1971**, 3167–3170. (b) Zamboni, R.; Just, G. *Can. J. Chem.* **1979**, *57*, 1945–1948. (c) Manhas, M. S.; Ghosh, M.; Bose, A. K. *J. Org. Chem.* **1990**, *55*, 575–580. (d) Manhas, M. S.; Banik, B. K.; Mathur, A.; Vincent, J. E.; Bose, A. K. *Tetrahedron* **2000**, *56*, 5587–5601.

^{(9) (}a) Cardillo, G.; De Simone, A.; Mingardi, A.; Tomasini, C. *Synlett* **1995**, *11*, 1131–1132. (b) Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Piccinelli, F.; Tolomelli, A. *Tetrahedron* **2004**, *60*, 5031–5040. (c) Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Tolomelli, A. *Tetrahedron: Asymmetry* **2004**, *15*, 593–601.

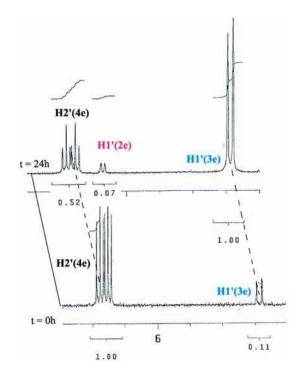
⁽¹⁰⁾ Reaction of $\mathbf{1a}$ carried out at rt afforded, in about 70 h, (E)- $\mathbf{2a}$ as the major isomer (56%), (Z)- $\mathbf{3a}$ (29%), and $\mathbf{4a}$ (15%).

⁽¹¹⁾ Trans configuration of compound 4 was determined on the basis of the ¹H NMR signal of H1' resonating at 5.0 ppm; see Supporting Information


^{(12) (}a) Anklam, S.; Liebscher, J. *Tetrahedron* **1998**, *54*, 6369–6384. (b) Otto, H. H.; Bergmann, H. J.; Mayrhofer, R. *Arch. Pharm.* (*Weinheim, Ger.*) **1986**, *319*, 203–216.

Scheme 2. Synthesis of 3-Bromo-3-alkenyl-azetidin-2-ones 1e and Nucleophilic Attack of NaN₃

presence of the nitro group on the aromatic ring generally favors the crystallization of products. The S_N2' reaction, performed on azetidin-2-one (\pm)-1e, gave the products 2e/3e/4e in 52/33/15 ratio and 88% total yield. The (Z)-isomer was obtained as an 82:18 mixture of diastereoisomers with opposite configuration at the C2' stereocenter. Only the minor (Z)-isomer could be crystallized from methanol/water solution, and the X-ray analysis showed the (2'S*-Z,4R*) relative configuration (Figure 2), thus allowing the (2'R*-Z,4R*) relative configuration to be attributed to the major isomer (Z)-3e. On the basis of these results, the anti direction of the nucleophile with respect to the bromide leaving group was confirmed.


Comparison of the ^{1}H NMR chemical shift for (E)-2a-e and (Z)-3a-e series revealed a complete regularity and allowed us to determine the relative configuration. Furthermore, since compounds 2 and 3 are in equilibrium, we could establish, on the basis of the ^{1}H NMR analysis in CDCl₃, that this equilibrium involves the azide 4. The slow equilibration between the three isomers was observed even at low temperature, changing the solvent (EtOAc) or in solvent-free conditions.

In fact, a mixture of **4e** (90%) and (*Z*)-**3e** (10%) was dissolved in CDCl₃ and analyzed by ¹H NMR spectroscopy

Figure 2. X-ray-determined structure for the minor (2'S*-Z,4R*)-**3e** diastereoisomer.

(Figure 3). The comparison of the spectra recorded at the initial time and after 24 h showed that the ratio between the products changed considerably, the amount of azide 4e (33%) being decreased in favor of isomer (Z)-3e (63%) and (E)-2e (4%). In a similar way, pure (E)-2e in CDCl₃ converted in 72 h into a mixture of azide 4e (15%), (Z)-3e (30%), and E-2e (55%).

Figure 3. Comparison of ¹H NMR spectra of a mixture of **4e** and (Z)-**3e** at different times.

The complete selectivity of the rearrangement was confirmed by a sequence of reactions carried out both on racemic **2a** and on optically pure **2d**. To this aim, pure (*E*)-**2a** was

Org. Lett., Vol. 7, No. 4, 2005

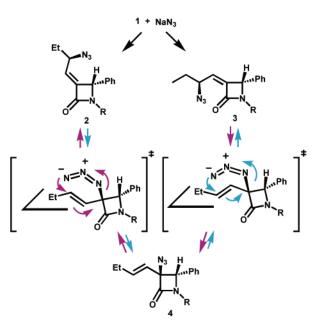
⁽¹³⁾ Crystal data for the minor (*Z*)-isomer: $C_{20}H_{19}N_5O_3$ MW = 377.40, monoclinic, $P2_1/n$, a=15.8947(12) Å, b=7.1605(6) Å, c=17.1209(13) Å, $\beta=100.848(2)^\circ$, V=1913.8(3) Å³, Z=4, $D_{calcd}=1.310$ Mg/m³, $R_1=0.0676$, w $R_2=0.1297$ (all data), GOF on $F^2=1.037$.

hydrogenated with Pd/C to the corresponding amino derivative, which was converted into the Cbz-derivative **5a** (overall yield = 68%) (Scheme 3). The 3,4-cis stereochemistry of

Scheme 3. Conversion of (*E*)-2 into CBz-Derivative 5

$$N_3$$
 N_3
 N_4
 N_4
 N_4
 N_4
 N_5
 N_6
 N_6

5a was assigned on the basis of the coupling constants H_3 — H_4 (J=5.3 Hz). In a similar way, the hydrogenation and protection of pure (2'R-E)-**2d** afforded **5d** ([α]_D²² = +5.2, Chiralcel OD:¹⁴ rt, 37.5 min) in 50% overall yield. On the other hand, a solution of pure (Z)-**3a** in CHCl₃ reached the 2:1 (Z)-**3a**/(E)-**2a** ratio after 24 h.


From this mixture (*E*)-**2a** was separated by flash chromatography and reduced under the above-reported conditions. The hydrogenation and the conversion to Cbz-derivative afforded **5a** as a single diastereoisomer, as confirmed by ¹H NMR and ¹³C NMR spectra (Scheme 4).

Scheme 4. Conversion of (Z)-3 into Cbz-Derivative 6, Equilibration to (E)-2, and Conversion to Cbz-Derivative 5

Moreover, the hydrogenation of the pure (*Z*)-3a, followed by protection with Cbz, afforded exclusively 6a (overall yield 50%), thus showing that the configuration of the newly stereogenic center is opposite in 2a and 3a. The same reaction sequence, performed on the optically active azides (2'*S*-*Z*)-3d afforded exclusively (2'*S*)-6d (yield 50%, $[\alpha]_D^{22} = +52$, Chiralcel OD:¹² rt, 23.1 min). In a similar way, compound (2'*R*-*E*)-2d, obtained from equilibration of the (2'*S*-*Z*)-3d

isomer and separation by flash chromatography, was converted exclusively into (2'R)-**5d** (yield 50%, $[\alpha]_D^{22} = +5.0$, Chiralcel OD:¹² rt, 37.5 min), thus confirming the stereochemical outcome of the equilibration.

The complete selectivity of the rearrangement was rationalized by the mechanism proposed in Figure 4, where a

Figure 4. Mechanism proposed for the [3,3]-sigmatropic rearrangement.

concerted [3,3]-sigmatropic rearrangement occurs via a cyclic transition state with complete stereocontrol, in accordance with the mechanisms suggested for the interconversion of allylic azides.⁴

The (2'R-E)-2, generated by S_N2' attack on the re face of the double bond in 1, is in equilibrium with trans-azide 4, which converts to (2'S-Z)-3 via [3,3]-sigmatropic shift on the si face of the double bond, with complete inversion of the C2' configuration. In a similar way, the sodium azide S_N2' attack on the si face of the double bond in 1, affords (2'S-Z)-3, which is in equilibrium with azide 4.

In conclusion, we showed that the S_N2' azide attack occurs anti to the leaving bromide, in accordance with the theoretic suggestions. The equilibrium of the β -lactam double-bond occurs under complete stereocontrol via concerted [3,3]-sigmatropic rearrangement of the azide. Finally, the equilibrium (E)-2/(Z)-3 or (Z)-3/(E)-2 allows the use of this reaction for synthetic purposes, giving, after hydrogenation, stereodefined 3(2'-amino) derivatives.

Acknowledgment. We thank MIUR (PRIN 2002 and FIRB 2001), CNR-ISOF, and University of Bologna (funds for selected topics) for financial support.

Supporting Information Available: Experimental procedures, full characterization of new compounds, and crystallographic data for the minor (*Z*)-isomer (CIF). This material is available free of charge via the Internet at http://pubs.acs.org. OL047815N

536 Org. Lett., Vol. 7, No. 4, 2005

⁽¹⁴⁾ Optical rotation values in CHCl₃ (c 1.0); Chiralcel OD (Daicel column), cellulose tris(3,5-dimethyl-phenyl)carbamate phase coated on 10 μ m silica gel, n-hexane/2-propanol 90:10 solvent mixture, flow 0.5 mL/min.